The interconnectedness and future plans - Atmosphere Flagship

Roland Neuber and the programme contributors

http://nysmac.npolar.no/research/flagships/
Contents of this talk

• Motivation and Goals
• Recent activities:
 – SSF funding for work group meetings, seminars, scientist exchanges
 – Planning and on site meetings
• Some scientific highlights
 teasers to the Atmosphere research session
• Outlook
Motivation:
Climate change in the Arctic

• The rapid change occurring in the Arctic is a challenge to the polar atmospheric sciences.
• Changes need to be recorded consistently in key climate parameters.
• Climate projections depend on process understanding and modelling.
• Various processes are interdepending.

-> various observations need to be combined
Atmosphere Flagship
General Activities:

• **Plan** for joint expeditions, observational periods, campaigns
• **Develop cross-station field activities**
• **Develop cross-station utilisation** and analyses of available data and ongoing measurements, plan joint publications

• Provide recommendations, e.g. for standard data processing, new lab facilities, etc.
• Contribute to pan-Svalbard activities (e.g. SIOS)
• Provide timeline for future activities
• Develop common lab infrastructure (e.g. metrology lab)
Atmosphere Flagship Workshops:

- 2014, October: Workshop in Potsdam, Germany and Goa, India
- 2015, September: Symposium in Tromsoe, Norway
- 2016, April: 1st on-site workshop
 October: Work group meetings in Kjeller, Norway; Xiamen, China
- 2017, May: 2nd on-site workshop
 November: Svalbard Science Conference, Oslo, Norway
SSF funded Atmosphere Flagship current Work Groups

- **WG1.** Clouds, humidity, precipitation
- **WG2.** Long-term observations and trends in temperature, precipitation, clouds and radiation
- **WG3.** Boundary layer meteorology
- **WG4.** Interaction of snow, atmosphere, and aerosols
- **WG5.** Atmospheric aerosol
- **WG6.** Variability in surface UV irradiance and ozone column
Further flagship work groups needed:

- Long range transport of trace gases
- Atmospheric composition and pollution
- Upper atmosphere studies including aurora studies
- ...

Work Groups are regarded as flexible in number, scope and composition
Atmosphere session today

• The Atmospheric Boundary Layer (2 talks)
• Clouds and Aerosols (3 talks)
• Snow and Aerosols (3 talks)
• Atmosphere Composition and UV (3 talks)
• Weather and Climate observations (4 talks)
• Ca. 30 Posters covering all ranges, from boundary layer to ionosphere
Atmospheric Observations in Ny-Aalesund

campaign-based process studies

longterm observations

AWIPEV, CAA, CNR, KOPRI, NCAOR, NILU, NIPR, NPI
but: How representative is the Ny-Ålesund site for the Svalbard region?
Long-Term Observations and Trend analyses

Anomaly of monthly mean surface air temperature (SAT) at 6 Svalbard meteo stations (Ny-Ålesund, Isfjord Radio, Barentsburg, Longyearbyen, Pyramiden, Hornsund)

B. Ivanov, AARI + met.no project: „Ivfjorden – past and present climate“
Poster 227
Meteorological Observations (WG Long-term Observations)

Pan-Svalbard Heterogeneity: temperature differences, seasonality and trends

Ny-Ålesund
Svalbard Lufthavn
Hornsund
Barentsburg
Pyramiden

met.no
Norway

Poland

Russia
Future plan: Combining atmosphere with glaciology and sea ice information
Meteorological Observations in the boundary layer
Meteorological Observations in the boundary layer

old pier 6.15 m\(_{\text{a.m.s.l.}}\) (AWI)

BSRN field 2.00 m\(_{\text{a.g.l.}}\) (AWI)

EC-NA 2.50 m\(_{\text{a.g.l.}}\) (AWI)

CC tower 2.00 m\(_{\text{a.g.l.}}\) (CNR)

EC-BA 3.00 m\(_{\text{a.g.l.}}\) (AWI)

Wind speed in m·s\(^{-1}\)

- \(\geq 12.5\)
- 10 - 12.5
- 7.5 - 10
- 5 - 7.5
- 2.5 - 5
- 0 - 2.5

Period:
- AWI stations: 03/10/2013 – 03/10/2014
- CNR station: 03/10/2013 – 30/09/2014

ZEPPELIN station
Aerosol microphysics, optical, chemical
CCN
Cloud residual properties
Cloud microphysics
Radiation
Trace and GHG gases
(concentrations & isotopes)
Meteorology

Gruvbadet
Aerosol microphysics, optical, chemical properties
Trace gas measurements

Climate change tower
Meteorology, radiation
fluxes of mass and energy
trace gases
3D wind lidar

Ny Ålesund
Meteorology, radiation, soundings
Remote sensing of aerosols and clouds
Precipitation and atmospheric deposition
The Climate Change Tower Integrated Project (CCT-IP)

Zeppelin

CCT

Ny-Alesund

Ice-Buoy

Mooring

Permafrost borehole

Top of Boundary Layer

Flux and Process Measurements

http://www.isac.cnr.it/~radiclim/CCTower
AGAP (Atmospheric Gondola for Aerosol Profile)

2017 field activity: D. Cappelletti, M. Mazzola, J. Lysok, J. Gaesser, C. Petroselli, A. Zaldei
Institutes: University of Perugia, ISAC-CNR, AWI, Univ. Warsaw, IBIMET.CNR
March-May 2017 ~50 aerosol profiles
Morphochemical characteristics and mixing state of long range transported wildfire particles at Ny-Ålesund (Svalbard Islands)

Beatrice Moroni, PhD, David Cappelletti, Stefano Croci, Silvia Becagli, Laura Caiazzo, Rita Traversi, Roberto Udidi, Mauro Mazzola, Krzysztof Markowicz, Christoph Ritter, Tymon Zielinski

Atmospheric Environment 156 (2017) 135-145

Institutes:
Univ. Perugia
CNR
Univ. Firenze
Univ. Warsaw
AWI Potsdam
IOP, Sopot

biomass burning event of July 2015
Temperature inversion at 3.5km traps aerosol

Humidity gradient: test for hygroscopic growth:
@ 55%rh: $r_{\text{eff}} \approx 0.22\mu\text{m}$; $\text{RI} \approx 1.55 - i \times 0.013$
@ 90%rh: $r_{\text{eff}} \approx 0.45\mu\text{m}$; $\text{RI} \approx 1.49 - i \times 0.008$
Ny Ålesund
78°56’ N - 11°56’ E
Spitsbergen
Svalbard (Norway)

March-September
Measurements
since 2010

Gruvebadet
Observatory
800 m from Ny Ålesund
about 50 m a.s.l.

PM10; 4-stage Impactor
Source assessment of atmospheric lead by isotope ratios

Spring: North Europe - Russia; Summer: Canada - USA

Ny Alesund Aerosol 2010-14

Bazzano et al., Atm. Env., 2016
Biogenic aerosols: assessment of marine sources

Good correlation between MSA and PP, primed by sea-ice melting.

Relevant in studying the impact of past climate change on marine biogenic activity

Becagli et al., Atm. Env., 2016
WG4, Aerosols and snow: Precipitation in the Arctic

Arctic precipitation likely to be modified
- total accumulation
- number of events
- strength and frequency of extremes
- phase

Changes in arctic precipitation will have an impact on
- the regional climate
- glacier mass balances
- hydrological cycles
- atmospheric chemistry
- biogeochemical cycles
- ...

Precipitation measurements with gauges suffer a wind-induced negative bias and require rigorous correction.

-> Coordinated effort for corrected, reliable, and homogeneous time series
- IGE Grenoble
- Norwegian Meteorological Institute
- AARI, St. Petersburg
- St. Petersburg State University
- University of Silesia
- Institute of Geophysics, PAS
- NCAOR, Goa

Hans-Werner Jacobi,
Institute for Geosciences and Environmental Research IGE,
Hans-Werner.Jacobi@univ-grenoble-alpes.fr
Supported by an SSF Atmosphere Flagship travel grant.
Snow Atmosphere interactions work:
Black Carbon (BC) monitoring in snow
Pilot study (SSF/SSG: «Community Coordinated Svalbard Snow Sampling (C2S3)»:
Sampling over 7 glaciers in Svalbard (see presentations on Thursday), for BC, snow physic, chemistry, water isotope and microbiology

In 2017: experimental campaign of variability of BC around Ny-Ålesund, by measuring air and snow BC content simultaneously
Snow Atmosphere interactions work

Future plans and collaborations:
• Develop a new site for common snow sampling in Ny-Ålesund, (multidisciplinary, see poster # 33): on going, will start winter 2017/2018 (NPI/AWIPEV)
• Discuss to expend/duplicate some work in Hornsund
• Idealy develop Gruvebådet site to better understand the deposition processes of aerosols by combining snow and air simultaneous measurements

Collaboration: France, Germany, Italy, Norway, Japan, Poland, Sweden, USA, UNIS
Work group 6: Variability in surface UV irradiance and ozone column

✓ Variability in atmospheric ozone at Ny-Ålesund from ozonesonde data;

✓ *UV Intercomparison and Integration in a High Arctic Environment (UV-ICARE)* project to harmonize data of UV irradiance and ozone column at four Svalbard stations: Ny-Ålesund, Barentsburg, Longyearbyen and Hornsund,
UV Intercomparison and Integration in a High Arctic Environment (UV-ICARE)

- A Svalbard Strategic Grants project (RCN/SSF)
- **Participants:** NILU (NO), ISAC-CNR (IT), IGF-PAS (PL), Univ. of South Bohemia/ Masaryk University (CZ)
- **Main goals:** Improved coordination and homogenization of UV data: inter-comparison of existing data, inter-comparison campaign with instruments from all stations/groups and implementation of common measurement, data analysis and data storage routines
- **Optional:** integration of UV measurements in Barentsburg in the network
- **Ongoing:** inter-comparison of longest UV data series (GUV, Robertson-Berger UV meter)
Upcoming activities

• Contribution to SIOS-SESS report
• Establishment of additional WGs
• Expanding Metrology lab in Ny-Aalesund
• Extend cooperation between sites on Svalbard e.g. Ny-Aalesund – Barentsburg – Hornsund
• YOPP: Special observation periods 2018
• MOSAiC
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAIC) in 2019-20

Correlated observations on and around Svalbard
- Aircrafts out of Longyearbyen, Spring/Summer 2020
- Atmospheric observations
- Sea ice observations
- Ecosystem observations

www.mosaic-expedition.org

MOSAiC Implementation Workshop
Acknowledgments:

Svalbard Science Forum
 for Strategic Grants, incl. travel funds
AWI, NCAOR, NPI, CAA, NILU, for hosting workshops
RCN for this week’s conference

All contributors to this talk and to the flagship activities!

Thank You!